Efficient Triadic Generators for Logic Circuits
نویسندگان
چکیده
In practical logic design circuits are built by composing certain types of gates. Each gate itself is a simple circuits with one, two or three inputs and one output, which implements an elementary logic function. These functions are called the generators. For the general purpose the set of generators is considered to be functionally complete, i.e., it is able to express any logic function under chosen rules compositions. A basis is a functionally complete set of logic functions that contains no complete proper subset. Providing compactness and expressibility of the generators the notion of a basis, however, ignores the optimality of implementations. Efficiently irreducible generating set, termed ε-basis, is an irreducible set of generators which guarantees an optimal implementation of every function, with respect to the number of literals in its formal expression. The notion of ε-basis is significant in the composition of functions, since the classical definition of basis does not consider the efficiency of implementation. In case of Boolean functions, for two-input (dyadic) generators it has been shown [3] that an ε-basis consists of all monadic functions, constants, and only two dyadic functions from certain classes. In this paper, expanding the domain of basic operations from dyadic to triadic, we study the efficiency of sets of 3-input gates as generators. This expansion decreases the complexity of functions (hence, the complexity of functional circuits to be designed). Gaining an evident merit in the complexity, we have to pay a price by a considerable increase of the number of such generators for the multiple valued circuits. However, in the case of Boolean operations this number is still very small, and it will certainly be useful to consider this approach in the practical circuit design. This paper provides a criterion for a generating set of triadic operations of k-valued logic to be efficiently irreducible. In the case of Boolean functions it is shown that there exist exactly five types of classes of triadic operations which constitute an ε-basis. A typical example of generator set which forms a triadic ε-basis, is also shown. key words: Multi-valued logic, logic design, generating sets
منابع مشابه
Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملEfficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملA Fast and Self-Repairing Genetic Programming Designer for Logic Circuits
Usually, important parameters in the design and implementation of combinational logic circuits are the number of gates, transistors, and the levels used in the design of the circuit. In this regard, various evolutionary paradigms with different competency have recently been introduced. However, while being advantageous, evolutionary paradigms also have some limitations including: a) lack of con...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملEfficient power clock generation for adiabatic logic
Practical issues in the design of power clock generators needed by adiabatic logic circuits are explained. Synchronous and asynchronous power clock generators are designed for an 8-bit adiabatic carry look-ahead adder and the more energy efficient circuit for the power clock generation is determined to be the 2N synchronous power clock generator that exhibits conversion efficiency of 77% at 1 o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999